Vision-Based Steering Control, Speed Assistance and Localization for Inner-City Vehicles
نویسندگان
چکیده
Autonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors have been presented in the literature. However, most of these approaches apply quite sophisticated and expensive sensors, and hence, the development of a cost-efficient solution still remains a challenging problem. This work proposes the use of a single monocular camera sensor for an automatic steering control, speed assistance for the driver and localization of the vehicle on a road. Herein, we assume that the vehicle is mainly traveling along a predefined path, such as in public transport. A computer vision approach is presented to detect a line painted on the road, which defines the path to follow. Visual markers with a special design painted on the road provide information to localize the vehicle and to assist in its speed control. Furthermore, a vision-based control system, which keeps the vehicle on the predefined path under inner-city speed constraints, is also presented. Real driving tests with a commercial car on a closed circuit finally prove the applicability of the derived approach. In these tests, the car reached a maximum speed of 48 km/h and successfully traveled a distance of 7 km without the intervention of a human driver and any interruption.
منابع مشابه
Modeling and Optimal Control of 4 Wheel Steering Vehicle Using LQR and its Comparison with 2 Wheel Steering Vehicle
In this paper, kinetic and kinematic modeling of a 4 wheel steering vehicle is done and its movement is controlled in an optimal way using Linear Quadratic Regulator (LQR). The results are compared with the same control of two-wheel steering case and the advantages are analyzed. In 4 wheel steering vehicles which are nowadays more applicable the number of controlling actuators are more than the...
متن کاملIntegrated Control of Active Steering and Electronic Differentials in Four Wheel Drive and Steering Vehicles Ph.D. Dissertation on Sensorial and Learning Systems
This thesis presents new results in the design and the integration of the active front/rear steering control with front/rear electronic differential in four wheel drive and steering vehicles; an application to vision based autonomous lane keeping control is also deployed. In four wheel steering vehicles it is shown that the lateral speed and yaw rate dynamics can be asymptotically decoupled by ...
متن کاملThe Optimal Steering Control System using Imperialist Competitive Algorithm on Vehicles with Steer-by-Wire System
Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC) and the Proportional, Integral and Derivative (PID) control on the vehicle steering system using Imperialist Competitive Algorithm (IC...
متن کاملDriver Assistance Systems based on Vision In and Out of Vehicles
As computer vision based systems like lane tracking, face tracking and obstacle detection mature an enhanced range of driver assistance systems are becoming feasible. This paper introduces a list of core competencies required for a driver assistance system, the issue of building in robustness is highlighted in contrast to leaving such considerations to a later product development phase. We then...
متن کاملDspic Based Power Assisted Steering Using Brushless Direct Current Motor
This study illustrates the Electrically Assisted power Steering (EAS) using BLDC motor for a vehicle. Earlier the Electrically Assisted power Steering (EAS) was implemented with DSP. This study shows the usage of a dsPIC to control the BLDC motor with an encoder. The BLDC motor here is driven by dsPIC through a three phase inverter system. IRAMS type of inverter is used which is cost efficient ...
متن کامل